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1 Data Description and Motivation

In recent years, the football analytics community has all but discarded the value of running in producing
successful NFL offenses, finding that runs are less effective in almost every situation outside of short yardage
on late downs or in the Redzone. NFL coaches and players might still tout the value of “establishing the run”
in faciliting the passing game, or in wearing out and fooling the defense, but there’s strong empirical evidence
against both these arguments.1 But, if you’re a fan of the Jaguars who watched Christian McCaffrey tear
apart your run defense for 176 yards in Week 5, or a Cowboys fan who watched Aaron Jones put in 4 critical
touchdowns that same week, it probably won’t be easy to convince you the running game doesn’t matter.
Regardless of what the statistics tell us, anyone who watches football consistently knows how destructive
the run can be, in the right conditions. So what exactly are these conditions? Instead of rehashing similar
arguments as to why rushing is strategically inferior to passing, I explore what the conditions for positive,
effective runs look like.

I leverage the availability of player-tracking data for 23,171 NFL rushing plays made available for this
year’s NFL Big Data Bowl. For each play, positional, directional, and movement data is available for each
player on the field at the moment the ball is handed off to the running back. In other words, the data offer a
snapshot of each play, alongside how many yards were gained on that play, as well as a host of game-status
variables such as the down, quarter, and time on the clock. Many studies use game-status variables to predict
the outcome of plays, answering, for instance, the likelihood of converting on 4th-and-1 at your own 30. My
work, instead, aims to predict the outcome of plays using only what’s happening on the field, agnostic to
”strategic” game variables. This is because, intuitively, the quarter or down should have no impact on how
far a running back can run, outside of the effect that game-status variables have in the strategic play-design
choices of coaches, which will naturally manifest in how the field status takes shape.

The player tracking data was first prepared for analysis by applying a few standardization steps. Given
that offenses will go towards either direction on the field during the course of an NFL game, plays where
the offense was moving towards the right were flipped in order to ensure consistency across all plays in the
dataset. This required adjusting not only the (x, y) coordinates of each player, but also their direction of
motion.2

2 Clustering Run Types

I began by first identifying what different kinds of runs are observed in the dataset. To avoid biasing my
grouping based on my prior assumptions, I applied a simple k-means clustering approach using the ball
carrier’s position on the field, distance from the line of scrimmage (LOS), speed, and direction of motion.
After some experimentation, k = 6 appeared to best cluster these groups, as for values of k past 6, differences
between some clusters appeared negligible. I visualized the resulting clusters by plotting the cluster center
of each as a vector, alongside a sample of 20 plays from each group. It was immediately clear these clusters
varied primarily in runner’s direction of motion, and could be labeled by the different positions in the
defensive line being attacked. This plot, along with the label I assigned to each cluster, is shown below in
Figure 1, where the LOS is the highlighted line.

1For great work on both questions, see Josh Hermsmeyer’s 538 article or Ben Baldwin’s Football Outsiders article, both
listed in the references section.

2Credit to the NFL’s own Michael Lopez for standardization code used.
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Figure 1: Resulting k-means clusters for different run types (k = 6).

Again, the above plot confirms that the clusters distinguish between themselves mostly by the ball carrier’s
direction of motion. To further analyze these clusters, the centers for each are shown in the following table.

Cluster Distance from LOS (yards) Y coordinate (yards) Speed (yards/second) Direction (◦)
Left edge 5.54 28.01 5.09 7.21
Left end 4.90 27.93 4.34 41.21
Left middle 4.77 27.36 3.84 71.87
Right middle 4.77 26.16 3.83 106.24
Right end 4.86 25.64 4.27 137.47
Right edge 5.31 25.34 5.13 171.67

Table 1: Table of cluster centers from k-means clustering (k = 6)

The table of cluster centers also makes clear how little variation there is between pairs clusters of the
same defensive position, but one towards the left and the other towards the right. The distance from the
LOS and speed centers are nearly identical between each left-right cluster pair. This indicates that not only
are clusters best grouped by direction of motion, but there is also no real difference between runs towards
the left or right. In other words, runs towards the right can be considered simply mirrored versions of runs
towards the left. With this in mind, I first reflected plays where the running back was moving towards the
right (θ ∈ (90, 270)) along the midpoint line (y = 25), then manually clustered the runs using the minimum
and maximum angles for the above clusters, which had nearly no overlap. The resulting clusters are shown
below in Figure 2.

2



Figure 2: Clusters for plays manually grouped by direction of motion.

With these clusters in place, I now had groupings of runs with similar objectives. This is key to analyzing
how varying field status might affect the outcome of a run, given that runs to different locations depend
on different scenarios. In other words, a wide open gap towards the sideline is irrelevant if the runner is
barreling down the middle of the field. The importance of run type and field status in predicting the outcome
of a play can be graphically understood by comparing the following two plays with similar runner motion,
but significantly different outcomes.

Figure 3: Comparison of two rushing plays towards the left edge.

It should be immediately obvious why the above plays in Figure 33 had such different outcomes. The
question remains, however, is how this graphically visible field status can be quantified, so that it might be
aggregated and analyzed for the entire dataset. To do this, I apply a method for quantifying and computing
field control for any given play in the next section.

3 Computing Field Control

To compute the relative field control, I used the player influence technique presented by Javier Fernandez
and Luke Bornn.4 This approach treats a player’s influence I(p, t) over some point p at time t as a bivariate
Gaussian distribution transformed by the player’s speed (s) and angle of motion (θ). This transformation is
done by adjusting the mean and covariance matrix.5 Given the availability of positional and motion data in

3Again, credit to the Michael Lopez for the play plotting code I used as base.
4Javier Fernandez and Luke Bornn. “Wide Open Spaces: A statistical technique for measuring space creation in professional

soccer”. In: (2018)
5For more detail, see Appendix A of Fernandez and Bornn, or the Python implementation at this Kaggle notebook.
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the NFL Big Data Bowl’s dataset, this approach is a natural fit. By calculating the individual field control
for each offensive player (i) and each defensive player (j) at any given point (p), the overall field control can
is given by the following, where σ is the logistic function σ(x) = 1

1+ex .

FC(p, t) = σ(
∑
i

I(p, t)−
∑
j

I(p, t))

The logistic function is used to ensure the field control values remain in range [0,1], where a value of
1 represents complete offensive control, 0.5 represents equally shared control, and 0 represents complete
defensive control. By calculating the above for each point on the field, a complete picture of the entire
field’s control at time t can be computed. To illustrate this, the two plays compared above are shown again,
but this time showing just the ball carrier and the field control surface in Figure 4. Comparing these two
plays, the influence of the defensive control—represented by the darker area—stretching around the area of
offensive control and closing off the runner’s path is clearly visible.

Figure 4: Comparison of field control for two rushing plays towards the left edge.

While looking at individual plays is helpful in illustrating potential patterns, I was more interested in
identifying relationships across the entire dataset. For instance, I wanted to determine whether and how the
field control changes for runs of different types, and for successful and unsuccessful plays of the same type.
This can be done by calculating the field control for all plays in the dataset, then aggregating the results
by the groups of interest. For this to be possible, I first had to standardize each play so that plays would
be comparable with one another. I did this by centering all x coordinates for each play around the LOS, so
that the x variable measures a player’s distance from the LOS, and not their field position.

Next, I computed and stored the field control for each of the 23,171 plays in the dataset. For each play, I
used a standard area of 37 yards horizontally (11 yards behind and 26 in front) and 50 yards vertically around
the LOS, for a total of 1850 individual points per play.6 The reasons for this were twofold: first, for all plays
to be aggregatable they must cover the same area, and second, it would be computationally infeasible to
compute the complete field control for all plays. Even using this limited area, calculating field control for
all 23,171 plays was only possible by parallelizing the computations and running them on a 20-core compute
cluster. With field control computed for each play, I averaged the control at each point p by run type, and
plotted them in Figure 5. As before, plays towards the right were reflected around y = 25.

6It should be noted here some plays near the endzone had less than 26 possible yards towards the right of the LOS. For
these plays the maximum available space was used, which can be computed by 110-LOS.
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Figure 5: Average field control per run type.

Figure 5 indicates little instrinsic differences in the setup of the field by different run types, aside from
field control for plays towards the middle being more densely concentrated at the LOS. Though perhaps
uninteresting, this conclusion makes some sense. One might expect that offensive play design would closely
relate the offensive line play—and consequently the field control situation—with the running back’s motion.
This, however, is likely to manifest only in succesful plays, given that the defensive line serves as an adversary
with the goal of disrupting the intended field architecture of the play design. Given that these averages are
comprised of over 23,000 plays in total, and that running plays more frequently fail than succeed, it is logical
that this structure would dissapear over aggregation.

A more productive approach was to analyze how field control varied not just between run types, but
between successful and unsuccessful runs of the same type. Typically, in the NFL analytics community, a
successful play is defined as one that leads to an increase in the probalistic odds of scoring points, but this
is a strategic measure. Instead, I define successful runs as ones that get past the line of scrimmage, gaining
more than one yard. This approach clarifies what patterns in field control might lead to successful runs. To
visualize this, I recreated the graph of average field control by run type, but instead plotting the average
succesful plays minus the unsuccessful plays. This plot is shown in Figure 6.7

7This plot omits plays where the LOS is on or past the 95 yard line, as the lack of full range of points for these plays
produced visual issues in the plot, and their exclusion did not change the visible patterns.
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Figure 6: Distance between successful and unsuccessful plays in average field control by run type.

The interpretation for Figure 6 is slightly different than Figure 5. The bright and dark spots do not
necessarily indicate a predominance of offensive or defensive control, respectively. Instead, bright spots are
areas where the offense has, on average, greater control on successful plays than unsuccessful plays, and the
opposite for darker spots. Strikingly, these plots indicates that on plays where the running back is able to
get past the LOS, the offense has less control over the area a few yards past the LOS . On the other hand,
in all three cases the offense has stronger control over sections of the LOS, and the location of this shifts to
the left as the run angle increases. In other words, the ”gap” the running back is running towards is directly
visible. This makes sense, and indicates that what is key to distinguishing between runs that will pan out
and those that will get stuffed is the offensive control over the running back’s target gap.

To test this finding, I recreated Figure 6 using a minimum of 5 and later 10 yards gained as the boundary
for successful plays. In these plots, the darker areas immediately past the line of scrimmage receded farther
back towards the endzone, resulting in nearly no difference between successful and unsuccessful plays shortly
past the line of scrimmage. At the LOS, however, the bright spots remained, indicating that even for medium
and long yardage runs, the most important factor is control of the target gap.

If a gap in the runner’s path is indeed the most salient indicator of successful runs, then quantifying
whether the runner is heading towards a gap could be a strong approach for predicting the outcome of runs.
Aditionally, identifying whether a gap exists—even if not on the runner’s path—could be used to determine
the “ideal” path for the runner, which in turn could be used to quantify how easily the runner could adjust
to the ideal path, another likely strong predictor of run outcomes. With these objectives, I proceed in the
next section to determine direct measures of these ideas, and fit a linear regression model to predict yards
gained.

4 Modeling Play Outcomes

Before implementing a regression model, I first established how to determine what, at the moment of the
handoff, the ideal running angle would be. Given the conclusions from the previous section, an ideal running
angle for rush success should point directly to the largest gap on the LOS, where the defensive team has the
weakest presence. Given the standardization approach centered coordinates on the LOS, and the vertical
range is [0, 50], the set of points on the LOS is expressed by

Plos := {p ∈ Plos | p = (0, y), ∀ y ∈ [0, 50]}

The ideal point on the LOS (pi) is defined as

pi := arg max
p∈Plos

I(p, t)
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In other words, pi is the point on the LOS with maximal offensive control. In the case of a tie, one is
chosen at random.8 Similarly, the expected point where the runner will arrive at the LOS (pe) can be easily
obtained by calculating where the runner’s motion vector will intersect with the LOS. Formally, given the
player’s position (pplayer = (x, y)), horizontal distance from the LOS (dh), and angle of motion (θ), the
expected intersection point is9

pe := (x+ dh, min(y + tan(max(θ, 0))dh, 50))

To illustrate how the expected and ideal intersection points on and paths towards the LOS are calculated,
I revisited the unsuccessful example play. Figure 7 again plots the field control and running back for this
play, but this time also plots the expected and ideal paths, where the expected path moves towards the
sideline, and the ideal towards the middle of the field. This makes clear how different the two points can be.

Figure 7: Expected and ideal path towards the LOS for sample play.

Given the expected (pe) and ideal (pi) points, the distance between the player’s actual target and ideal
is easily found by dei = |ye − yi|, given that xe, xi = 0 since both are on the LOS. Aditionally, the length of
the expected and ideal paths are le = d(pplayer, pe) and li = d(pplayer, pi), respectively, where the function
d(p1, p2) computes the Euclidean distance between the input points.

Finally, the field control at points pe and pi must be found. Instead of recomputing these using the
technique described in Section 3, I leveraged the already computed values for each play. However, I had
only computed field control values for each play for integer coordinates. This is not a problem for pi, given
that—due to the way it is defined—it will always be an integer pair of coordinates, but it is for pe, which is
calculated as a product of the runner’s angle of motion and position, both on continuous scales. The control
I(pi, t) is thus already defined, but I(pe, t) is not, and must be either recomputed or approximated. To avoid
incurring additional computational costs, I approximated values for pe using the fact that, for any given
point on the LOS p = (0, y), the closest points where field control values are available must be p1 = (0, byc)
and p2 = (0, dye). The field control at point pe at time t can thus be approximated as follows, where di is
the Euclidean distance between pe and pi:

I(pe, t) ≈ (1− d1
d1 + d2

)I(p1, t) + (1− d2
d1 + d2

)I(p2, t)

In other words, the field control at pe is an average of the field control at the 4 closest points, inversely
weighted by the distances between each point. In practice, d1 + d2 will always equal one, simplifying the

8An extension of this approach could consider a small range around pi, as opposed to the single point with “best” control.
9The min(ye, 50) and max(θ, 0) operations are used to avoid plays overflowing past the boundaries of the field, such as if

the player’s angle of motion points vertically up or away from the LOS.
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calculation. Using this approach, I approximated the field control I(pe, t) for each play. I then used these
variables, along with the player’s speed, to fit a linear regression model predicting the yardage gained. In
short, the predictors used are:

• s, the player’s speed

• FCe, the field control I(pe, t) at the expected point of intersection

• FCi, the field control I(pi, t) at the ideal point of intersection

• dei, the distance between pe and pi

• le, the length of the expected running path

• li, the length of the ideal running path

• y, the yards gained on the play,

with interactions between dei and FCi, as logically the relevance of the ideal gap depends on the runner’s
ability to arrive at this gap, and between s and le and li, as speed dictates how long a path would take. The
linear regression model thus takes the form

y = β0 + β1s+ β2FCe + β3FCi + β4dei + β5le + β6li + β7dei · FCi + β8s · le + β9s · li

I fit two linear models were using this specification, one on the entire dataset, and the other only on plays
where the runner gained at most 10 yards. I did this to validate that the results observed in the first were
not due to entirely to outlying plays where the running back breaks free of the defense for a massive gain.
The regression results for the first and second model are shown in Tables 2 and 3, respectively.

Table 2: Regression outputs for model fit on full data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.9341 0.5749 -1.62 0.1043

s 0.9597 0.1083 8.86 >.001 ***
FC e 2.3496 0.5107 4.60 >.001 ***
FC i 0.1343 0.6468 0.21 0.8355
d ei 0.0111 0.0202 0.55 0.5830
l e 0.2487 0.0591 4.21 >.001 ***
l i -0.0365 0.0259 -1.41 0.1581

FC e:d ei 0.0300 0.0408 0.74 0.4619
s:l e -0.0632 0.0128 -4.94 >.001 ***
s:l i 0.0020 0.0053 0.37 0.7125

Adjusted R2 = 0.011

Though neither models explain much of the variance in yards gained, there are several significant pre-
dictors. In both models, the player’s speed, the field control at the expected point of intersection, and the
interaction between player speed and the length of the expected path are highly significant (p < .001). For
the first model, the length of the expected path is also highly significant (p < .001), and significant (p < .05)
for the second model. In the second model, the distance between the expected and ideal points on the LOS
and the length of the ideal path are also significant. In terms of coefficient magnitude, s and FCe are the
most impactful predictors. The coefficients for FCe show that if the offense has complete control of the
expected point of intersection (FCe = 1), we can expect that play to go for about 2 yards more, on average,
than it otherwise would. The coefficients for speed (s) indicate that for every unit increase in the player’s
speed, we expect to see, on average, an increase in the yardage gained between 0.5 and 0.8.

The third term highly significant in both models, the interaction between s and length of the expected
path, is harder to interpret. In both cases, the individual effect of le is both significant and positive,
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Table 3: Regression outputs for model fit on plays where yards gained <= 10.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.2061 0.2823 0.73 0.4654

s 0.5648 0.0532 10.62 >.001 ***
FC e 1.8308 0.2509 7.30 >.001 ***
FC i -0.0356 0.3189 -0.11 0.9112
d ei 0.0227 0.0099 2.30 0.0216 *
l e 0.0685 0.0291 2.36 0.0183 *
l i -0.0312 0.0127 -2.47 0.0136 *

FC e:d ei -0.0130 0.0200 -0.65 0.5141
s:l e -0.0377 0.0063 -5.98 >.001 ***
s:l i 0.0021 0.0026 0.79 0.4268

Adjusted R2 = 0.031

suggesting longer paths to the LOS lead to higher yardage gain. This is only true, however, when the player
speed is under 3.9 in the first model, and 1.8 in the restricted model. This indicates that the number of
plays where le actually has a positive impact on the yardage gained is quite small, given that a speed of 1.8
is in the bottom 2% of the data. That the effect of le is positive even for speeds up to 3.9 in the long yardage
case suggests long yardage plays could disproportionately come down the sideline, where the back has to
travel farther to reach the LOS. It is also likely that this effect is partly produced in unpredictable ways by
situations where the back changed direction, given that this effect is linked with slower speeds, which would
necessarily make easier abruptly switching directions.

Interestingly, predictors capturing the ideal gap in the LOS are virtually irrelevant in both models, with
only dei and li being significant only in the second model, and FCi being completely insignificant in both
cases. Additionally, no interactions with FCi or li were significant. There are several possible reasons for
this. First, it may be that the ideal spot is not relevant to the success of the play because the running back
cannot consistently adjust to target it, and is instead locked in to their current path. Secondly, it may be
that the variables capturing information about the ideal gap add little information that the FCe predictor
does not already provide. The predictor dei, for instance, is strongly correlated with FCe, as it makes sense
that the closer the expected point is to the ideal one, the higher the field control FCe will be. I confirmed this
by calculating the variance inflation factor (VIF) for each individual predictor to test for multicolinearity,
which showed dei (V IF = 7.48) and li (V IF = 6.39) were correlated with other predictors, as a VIF of 5 is
usually the boundary for the presence of multicolinearity.10

5 Conclusions and Future Work

In beginning this work, I set out to answer the following question: what makes a run effective? In short, an
extensive analysis of how field control varies between succesful and unsucessful runs, alongside linear models
predicting the outcome of runs using running back speed, expected running path, and field control at the
LOS indicate that if you want a run to be succesful, then the running back better be pointed directly at a gap
in the defensive line and be moving fast at the moment of the handoff. These two variables were significantly
more impactful than how far the back would have to travel before reaching the LOS, and whether other,
better gaps existed at the LOS. This suggests, for play design purposes, that runs work best when kept
simple. Expecting plays where the back receives the ball before committing to a run is likely a recipe for
poor runs, even if Le’Veon Bell’s hesitation runs produce explosive plays here and there.

Naturally, there are significant limitations to the conclusions I found in this work. Given that data is
only available for the moment of the handoff, it is impossible to determine precisely how any given play
unfolded. Further exploration into this question would benefit greatly from full tracking data across entire

10Note that these values were calculated by fitting a third model without the interaction terms, as interactions necessarily
exhibit high multicolinearity.
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plays being made available. This would permit testing whether succesful runs do indeed tend to be straight
shots, or whether the empirical findings warrant a more nuanced explanation. In a similar vein, complete
tracking data would allow for the motion of running backs to be accurately treated as curves, as opposed to
the obviously oversimplified direct line approach in this paper. Finally, complete tracking data would allow
for pitch control to be measured and explored as the play evolves, opening the door for an unimaginable
number of questions.
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